<<
>>

Звуковые волны

Звук возникает вследствие движения или вибрации объекта, — например, когда ветер дует сквозь ветви деревьев. Когда что-либо движется, молекулы находящегося впереди воздуха сжимаются.

Эти молекулы толкают другие молекулы и затем возвращаются в исходное положение. Так волна меняющегося давления (звуковая волна) передается по воздуху, хотя отдельные молекулы воздуха далеко не уходят. Эта волна аналогична ряби на поверхности пруда, когда туда бросают камень.

Звуковую волну можно описать графиком давления воздуха в зависимости от времени. График давления в зависимости от времени для одного из видов звука показан на рис. 4.23. На нем представлена синусоидальная волна (названная так потому, что она аналогична синусоидальной функции в математике). Звук, соответствующий синусоидальной волне, называется чистым тоном. Такие звуки важны для анализа слуха, потому что более сложные звуки можно разложить на чистые тона, т. е. на ряд различных синусоидальных волн. Чистые тона определяются двумя параметрами, от которых зависит их ощущение человеком. Один параметр — это частота тона. Частота тона — это количество колебаний за одну секунду (или герц), т. е. частота, с которой молекулы двигаются туда-сюда (см. рис. 4.23). Частота — основа воспринимаемой высоты тона, одного из наиболее примечательных качеств звука.

Рис. 4.23. Чистый тон. Вибрирующий камертон создает последовательность волн сжатия и расширения воздуха, подчиняющихся синусоидальному закону. Такой звук называется чистым тоном. Он описывается параметрами частоты и интенсивности. Когда камертон делает 100 колебаний в секунду, он создает звуковую волну со 100 сжатиями в секунду, или с частотой 100 герц. Интенсивность (или амплитуда) чистого тона — это разница в давлении между пиками и впадинами. Форму волны любого звука можно разложить на ряд синусоидальных волн с различной частотой, амплитудой и фазой.

Когда эти синусоидальные волны складываются, получается первоначальная форма волны.

Второй параметр чистого тона — его интенсивность (амплитуда), т. е. различие давлений между пиком и впадиной на графике зависимости давления от времени (см. рис. 4.23). Интенсивность — основа восприятия громкости. Интенсивность звука обычно измеряется в децибелах (дБ); росту интенсивности на 10 децибел соответствует увеличение мощности в 10 раз, росту на 20 децибел — увеличение в 100 раз, 30 децибел — 1000 раз и так далее. Например, тихий шепот в беззвучной обстановке библиотеки имеет интенсивность около 30 децибел, в шумном ресторане уровень звука может равняться 70 децибелам, уровень звука на рок-концерте может достигать 120 децибел, а шум взлетающего самолета может превышать 140 децибел. Постоянное воздействие уровня звука, превышающего 100 децибел, может повлечь за собой необратимую потерю слуха.

И последней характеристикой звука является тембр — наше восприятие сложности звука. Практически ни один из звуков, окружающих нас в повседневной жизни, не является столь простым, как чистые тона, о которых мы говорили выше. (Исключение составляют лишь камертоны и некоторые электронные музыкальные инструменты.) Звуки, издаваемые акустическими инструментами, автомобилями, человеческим голосом, животными и водопадами, характеризуются сложными паттернами звукового давления.

Слуховая система

К слуховой системе относятся уши, некоторые участки мозга и проводящие нервные пути. Нас в первую очередь будут интересовать сами уши; к ним относят не только отростки по обеим сторонам головы, но и весь слуховой орган, большей частью находящийся внутри черепа (рис. 4.24).

Рис. 4.24. Поперечный разрез уха. На рисунке показано общее строение уха. Внутреннее ухо состоит из улитки, содержащей слуховые рецепторы, и вестибулярного аппарата (полукружные каналы и вестибулярные мешочки), служащего органом для чувства равновесия и движения тела.

Как и глаз, ухо содержит две системы. Одна система усиливает и передает звук к рецепторам, после чего за дело принимается другая система, которая преобразует звук в нервные импульсы. Передающая система включает наружное ухо, состоящее из внешнего уха (pinna — ушная раковина) и слухового канала, а также среднее ухо, состоящее из барабанной перепонки и цепочки из трех костей — молоточка, наковальни и стремечка. Система преобразования расположена в части внутреннего уха, называемой улиткой и содержащей рецепторы звука.

Рассмотрим передающую систему подробнее (рис. 4.25). Наружное ухо помогает улавливанию звуков и передает их через слуховой канал к упругой мембране, которая называется барабанной перепонкой. Барабанная перепонка — самая наружная часть внутреннего уха. Ее заставляют вибрировать звуковые волны, приходящие по слуховому каналу. Задача внутреннего уха — передать вибрации барабанной перепонки через заполненную воздухом полость к другой мембране, овальному окошечку, служащему воротами ко внутреннему уху и рецепторам. Эту передачу внутреннее ухо осуществляет посредством механического мостика, построенного из молоточка, наковальни и стремечка. От барабанной перепонки вибрации передаются первой из этих косточек, передающей их второй, которая, в свою очередь, передает их третьей, результатом чего являются вибрации овального окошечка. Это механическое приспособление не только передает звуковую волну, но и значительно усиливает ее.

Рис. 4.25. Схематическое строение среднего и внутреннего уха. а) Движения жидкости внутри улитки изгибают базилярную мембрану и стимулируют волосяные клетки, служащие слуховыми рецепторами, б) На поперечном сечении улитки показана базилярная мембрана и волосяные клетки-рецепторы.

Теперь рассмотрим систему преобразования. Улитка — это спиралевидная трубка из костного вещества. Мембраны разделяют ее на секции, заполненные жидкостью; одна из мембран — базилярная, к ней прикреплены слуховые рецепторы (см.

рис, 4.25). Эти рецепторы называются волосяными клетками, потому что по строению они похожи на волоски, проникающие в жидкость. Давление на овальном окошечке (соединяющем среднее и внутреннее ухо) создает изменения давления жидкости в улитке, что, в свою очередь, заставляет базилярную мембрану вибрировать, приводя к изгибанию волосяных клеток и появлению электрического импульса. Таков сложный процесс преобразования звуковой волны в электрический импульс. Нейроны, синаптически соединенные с нервными клетками, имеют длинные аксоны, которые образуют часть слухового нерва. Большинство слуховых нейронов соединены с отдельными нервными клетками. В слуховом нерве около 31 000 слуховых нейронов, что гораздо меньше одного миллиона нейронов, составляющих зрительный нерв (Yost & Nielson, 1985). От каждого уха слуховые пути идут к обеим сторонам мозга и заканчиваются на синапсах различных ядер, прежде чем достигают слуховой коры.

<< | >>
Источник: Рита Л. Аткинсон, Ричард С. Аткинсон, Эдвард Е. Смит, Дэрил Дж. Бем, Сьюзен Нолен-Хоэксема. Введение в психологию (Учебник для студентов университетов). 2003

Еще по теме Звуковые волны:

  1. Звуковые волны
  2. 14.2. Длинные волны воспроизводства Н.Д. Кондратьева.
  3. ДЛИННЫЕ ВОЛНЫ КОНЪЮНКТУРЫ
  4. Мозговые волны (brain waves)
  5. СПЕКТР ЗВУКОВОЙ
  6. ВОСПРИЯТИЕ СЛОЖНЫХ ЗВУКОВ
  7. СПЕКТР ЗВУКОВОЙ (англ. sound spectrum)
  8. ВОСПРИЯТИЕ СЛОЖНЫХ ЗВУКОВ (англ. perception of complex sounds)
  9. ОЩУЩЕНИЯ ЗВУКОВ
  10. ГАРМОНИКИ — см. Спектр звуковой.
  11. ОЩУЩЕНИЯ ЗВУКОВ — см. Слух.
  12. БЕЛЫЙ ШУМ (звуковой)
  13. БЕЛЫЙ ШУМ (звуковой) (англ. white noise)
  14. Статья 12.20. Нарушение правил пользования внешними световыми приборами, звуковыми сигналами, аварийной сигнализацией или знаком аварийной остановки